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Multigrid simulations of detached shock waves

P. Gerlinger∗;† and M. Aigner

Institut f�ur Verbrennungstechnik der Luft- und Raumfahrt; Universit�at Stuttgart; Germany

SUMMARY

The use of multigrid convergence acceleration techniques is investigated for supersonic and hypersonic
�ows over blunt bodies. In these cases detached shock waves occur that usually complicate convergence
for multigrid methods. It is shown that a simple damping of the restricted residual error enables conver-
gence without the application of expensive upwind restriction or prolongation operators. The achieved
reduction in CPU time increases with increasing free stream Mach number. A similar technique may be
used for reactive �ows where the restricted residual error is damped in regions of high chemical activity.
A spherical nose projectile moving at Mach 6.46 in a stochiometric hydrogen–air mixture serves as a
test case to demonstrate the e�ciency of this approach in case of combustion. Copyright ? 2004 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Multigrid techniques belong to the most e�cient numerical methods for solving large �uid
�ow problems. During the last years research is underway to realize multigrid methods that
achieve text book multigrid e�ciency (TME) for realistic problems. Brandt [1] has de�ned
TME as an optimally convergent method achieving fully converged solutions for the dis-
cretized set of equations in less than 10 multigrid cycles. An optimal method would achieve
convergence with arithmetic operations that scale according to O(N ), where N (N=NVm) is
the number of volumes (NV ) multiplied with the number of equations (m) to be solved in
every volume. For purely elliptic problems, TME has already been achieved. For hyperbolic
systems like the incompressible Euler equations O(N ) methods have also been realized [2, 3]
as well as O(Nm2) solvers for the compressible Navier–Stokes equations [4]. Some of the
techniques developed distinguish between elliptic and hyperbolic factors of the system and
treat them appropriately [5]. However, up to now most results presented are for simple ge-
ometries and still lack practical aspects as turbulence modelling and highly stretched grids
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required in near wall regions. Moreover, TME is not attained for solutions of the compressible
Reynolds-averaged Navier–Stokes equations in general. While most applications concerning
TME deal with aerodynamic airfoil or simple channel �ows, such solvers are also required
for complex internal �ows with jet injection, swirl and recirculation. However, there is hope
that grid independent O(N ) methods for general applications will be developed in the next
years.
Another probably at least equally demanding problem for multigrid methods is the simu-

lation of reacting �ows based on �nite-rate chemistry. Due to the strong non-linearity of the
chemical source terms, the similarity between the coarse and �ne grid solution gets lost in most
cases that may cause divergence [6, 7]. Even if the solver is able to damp out high frequency
error components, the question remains how to deal with the strong non-linear chemistry
source terms at coarse grid levels. Because of their strongly non-linear form and because
they describe a physical local process, recalculation usually fails at least for more than two
grid levels. Especially, multigrid simulations of detached �ames still are a great challenge.
Moreover, in case of turbulent combustion and assumed pdf (probability density function)
modelling the second moment equations (e.g. variance of energy and variance species �uctua-
tions) contain sti� chemical source terms too that have to be treated by the multigrid method
[8]. On the other hand, convergence acceleration is especially needed for such simulations
due to the large set of governing equations and therefore long CPU times.
For most of the basic problems of standard multigrid methods to achieve convergence

(strong shock waves in supersonic and hypersonic �ows, highly stretched grids, turbulence
and chemical source terms) there are simple remedies. However, some of these techniques
reduce the theoretically achievable convergence acceleration and convergence rates are still
grid-dependent. On the other hand, most of these techniques are easy to implement into the
existing codes, they are robust and reduce the CPU times by factors between 2 and 10 even
for complex �ows with large density ratios (in case of hydrogen injections) and combustion
[8].
In this paper the full approximation storage (FAS) scheme of Brandt [9, 10] is the basis for

the multigrid method used. A version for implicit approximately factored schemes is employed
which was �rst presented by Jameson and Yoon [11]. The good damping properties of the
implicit LU-SGS algorithm allow multigrid convergence even for cell aspect ratios up to
10 000 [12]. The modi�cations introduced to enable convergence in case of strong shock
waves is a simple damping of the restricted residual error [13]. A similar treatment is used
for chemical reactions where the restricted residuals are damped in regions of high chemical
activity [7, 8]. As to deal with non-linear source terms of the low Reynolds number q-!
turbulence closure used, non-linear contributions based on spatial derivatives are transfered
to coarse grid levels without recalculation and are kept frozen [13]. For non-reactive �ows
these techniques worked very stable and reliably for a great variety of di�erent applications.
In case of combustion the proposed method has proven to achieve considerable accelerations
for attached hydrogen and methane �ames but it is still test case and grid size dependent if
detached �ames are simulated.
This paper investigates the application of the mentioned multigrid method to the simulation

of detached shock waves, both with and without combustion. In contrast to attached shocks
where the shock position is de�ned by the geometry this is not the case for detached shock
waves. If slightly di�erent shock positions are obtained at di�erent grid levels this may cause
problems for the multigrid solver [14]. A similar situation arises in case of detached �ames
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where the �ame position is de�ned by the calculated ignition delay which may di�er between
di�erent grid levels. It will be shown that the proposed techniques enable convergence and
that the achieved acceleration slightly increases with increasing in�ow Mach number. The
investigated non-reactive test cases cover the range from Mach 2 to 8, the reactive test case
has a Mach number of 6.46.

2. FLUID EQUATIONS AND NUMERICAL SCHEME

For the investigation of high-speed �ows with combustion, the expanded time-averaged
Navier–Stokes equations are solved which are given in two-dimensional form by

@Q
@t
+
@(Fj − F�j)

@xj
=S; j=1; 2 (1)

Q denotes the conservative variable vector

Q=[�; �u1; �u2; �E; �q; �!; �Y�]T; �=1; 2; : : : ; Nk − 1 (2)

Fj are inviscid, and F�j are viscous �ux vectors in xj direction, respectively. The source
vector S results from turbulence and chemistry. The variables in Equation (2) are the den-
sity �, velocity components uj, the total speci�c energy E, the turbulence variables q=

√
k

(k=turbulent kinetic energy), and !=�=k (�=dissipation rate of k), and the species mass
fractions Y�. Nk is the number of di�erent species. A two-equation low Reynolds number q-!
turbulence model was chosen as turbulence closure [15, 13]. The source vector appearing on
the right-hand side of Equation (1) is given by

S=[0; 0; 0; 0; Sq; S!; S�]T; �=1; 2; : : : ; Nk − 1 (3)

where Sq and S! are source terms of the q-! turbulence model, and S� are species source
terms resulting from chemistry. The unsteady form of the governing equations is integrated
in time using an implicit �nite-volume LU-SGS algorithm [11, 16, 13]. The numerical �nite-
volume solver is �rst order in time and second order in space. Inviscid and viscous �uxes
are discretized by central di�erences. A second- and fourth-order matrix dissipation allows a
good shock capturing with low numerical dissipation [17].

3. THE MULTIGRID METHOD

For non-linear problems there are two possibilities to apply multigrid methods: The �rst one
is a global linearization of the problem, e.g. by a Newton method and subsequent application
of a multigrid method for linear problems to the linearized set of equations. However, the
more important and more frequently used approach is to apply the multigrid method directly
to the non-linear problem being called FAS scheme by Brandt [5, 9]. This technique is used
throughout this paper in a version for implicit approximately factored schemes [11, 13]. First,
we want to describe the procedure of the standard FAS multigrid method before modi�cations
are introduced, necessary to simulate detached shock waves.
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For all simulations to follow a full coarsening is used. That means that a coarser grid
is formed by eliminating every other grid line on the previous �ner mesh. In this way a
hierarchy of up to four levels k=1; 2; 3; 4 is created. The multigrid cycle may be started
on the �nest or coarsest grid (nested multigrid). Here, a V -cycle with only 1 coarse grid
iteration is employed without post relaxations during prolongation. No bene�t was obtained
from additional coarse grid smoothings. One smoothing step of the implicit LU-algorithm may
symbolically be expressed by

LU(Qk)�Qk=R(Qk) (4)

where LU is the implicit operator, R the residual, k indicates the level of the grid, and �Qk

is the correction obtained from one LU-sweep. After one relaxation sweep is performed on
the �nest level, the FAS V -cycle strategy is as follows:
Step 1: The present �ne grid solution and the recalculated residuals are transferred from

the �nest to the next coarser grid by

Qk+1
0 =rk+1k Qk ; Rk+1c = �rk+1k R(Qk) (5)

where the subscripts 0 and c are standing for the initialized coarse grid solution and the
collected residuals, respectively. The restriction operators rk+1k for the transfer of the variable
vector from �ne to coarse grids is given by

rk+1k Qk=
1
�k+1

4∑
l=1
�klQ

k
l (6)

where � are the corresponding cell areas. In this paper a full coarsening is used and always
four �ne grid volumes are collected forming one coarse grid volume. The residuals R (and
later also T) are therefore restricted by

�rk+1k Rk=
4∑
l=1
Rkl for k = 1; �rk+1k Tk=

4∑
l=1
Tkl for k ¿ 1 (7)

using a simple adding up of four �ne grid values.
Step 2: According to Jameson and Yoon [11] a forcing function is de�ned by

Pk+1=Rk+1c −R(Qk+1
0 ) for k=1 (8)

which is the di�erence between the transferred residuals from the �ne grid and the recalculated
coarse grid residuals for which the transferred variables Qk+1

0 are used. The driving residual
error for the coarse grid iteration is the sum of the forcing function and the calculated residual

Tk+1=R(Qk+1) + P k+1 (9)

Step 3: The coarse grid solution is updated by

LU(Qk+1)�Qk+1=Tk+1 (10)

Steps 1–3 are repeated successively until the coarsest grid level is reached. However, the
forcing function for k¿1 is now calculated by

P k+1= �rk+1k T(Qk)−R(Qk+1
0 ) (11)

instead of Equation (8).
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Step 4: Finally, the coarse grid corrections obtained are prolongated back to the �ner
grids by

Qk
new=Q

k + pkk+1(Q
k+1
new −Qk+1

0 ) (12)

where pkk+1 is a prolongation operator for the transfer from coarse to �ne grids. A bilinear
interpolation is used in the present case. The boundary conditions are treated in the same way
at all grid levels.

3.1. Modi�cations of standard multigrid methods

While standard multigrid techniques work stable and highly e�cient in case of elliptic sets
of equations, problems arise if supersonic or hypersonic �ows have to be treated. Reduced
multigrid e�ciencies or even failure are observed in case of

• sets of governing equations which are of mixed types (e.g. elliptic hyperbolic),
• grid alignment (main �ow direction aligns with one co-ordinate direction),
• strong attached or detached shock waves,
• turbulence closures that include strong non-linear source terms (especially low Reynolds
number versions),

• chemically reacting �ows simulated with �nite-rate chemistry,
• highly stretched grids to resolve near wall layers.

Unfortunately, at least in case of high-speed combustion several of these points appear at the
same time. For a part of these problems there are already reliable techniques to get multigrid
methods working but an O(Nm2) method for combustion is still not available.

3.1.1. Shock waves. The hyperbolic character of the set of governing equations in supersonic
and hypersonic �ows usually causes divergence of standard multigrid methods if strong shock
waves occur. Standard restriction and prolongation operators do not account for the limited
regions of in�uence in case of supersonic �ows. Thus non-physical upwind in�uence are pos-
sible that, especially near shock waves, may avoid convergence. Di�erent approaches have
been introduced to enable multigrid convergence in such cases. A complex and computa-
tional expensive method that has been tested for the Euler equations is based on characteristic
restriction and prolongation operators [18]. Another upwind restriction and prolongation tech-
nique for the Euler equations was presented by Koren and Hemker [14]. A very simple
non-characteristic upwind prolongation is used in Reference [12] for the simulation of vis-
cous high-speed mixing. Ferm and L�otstedt [19] identi�ed oscillatory error components at
shock waves to be responsible for bad convergence rates. As a consequence, they introduced
a residual-dependent restriction operator. For simple model test cases and the Euler equations
strong improvements are reported with this technique for two grid levels. A simple and robust
working method is a damping of the restricted residual error in the vicinity of shock waves
[20, 7, 12, 13]. Shock waves are always associated with strong pressure gradients that may be
localized by

��i; j=
|pi+1; j − 2pi; j + pi−1; j|

(1− �)(|pi+1; j − pi; j|+ |pi; j − pi−1; j|) + �(pi+1; j + 2pi; j + pi−1; j) (13)

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:1045–1061



1050 P. GERLINGER AND M. AIGNER

A similar formulation is used for the � direction. The parameter � de�nes the smoothness of
this sensor as well as its activation in case of weak disturbances. Usually �=0:5 is used. To
locate regions where the transferred residuals should be reduced the shock sensors in � and
� direction are combined

�ki; j=C
k max(��i; j ; �

�
i−1; j ; �

�
i+1; j ; �

�
i; j ; �

�
i; j−1; �

�
i; j+1) (14)

and Equation (7) is replaced by

�rk+1k Rk=
4∑
l=1
Rkl max(0; 1− �kl ); �rk+1k Tk=

4∑
l=1
Tkl max(0; 1− �kl ) (15)

The maximum in these equations is only required if values Ck¿1 are chosen. This method
has proven to work extremely stable for attached shock waves and is investigated for the
simulation of detached shocks in this paper. If bow shocks in front of a blunt body occur, an
additional problem is that the exact shock position is de�ned from aerodynamic reasons. In
that case a shift between the coarse and �ne grid shock position may cause divergence. Thus
the damping of the restricted residual error has to cover the spatial regions of �ne and coarse
grid shock waves.

3.1.2. Non-linear source terms of turbulence closures. For the hypersonic test cases inves-
tigated turbulence is of minor importance. There is only a weak production of turbulence
intensity directly at the shock waves. Therefore, the multigrid modi�cations of turbulent pro-
duction rates at coarse grid levels are not of importance for this paper. A stable and robust
simulation of turbulent test cases even with low Reynolds number turbulence closures is pos-
sible if parts of strongly non-linear source term contributions are treated frozen at coarse grid
levels. A detailed description of this technique may be found in Reference [13].

3.1.3. Non-linear source terms due to chemistry. A more severe problem than turbulence
source terms are the chemical production rates in case of �nite-rate chemistry. Due to the
strong non-linearity of these terms they have to be treated implicitly. The question that arises
is how such non-linear terms are treated at the coarse grid levels. A simple recalculation as
well as a freezing as in case of turbulence usually causes failure of the multigrid method.
The reason for divergence in case of freezing is the much stronger coupling between the
variable vector and source terms in case of chemistry. One possibility to achieve multigrid
convergence that works quite stable at least for attached �ames is a damping of the restricted
residual error in regions of high chemical activity [7, 8]. This is associated with losses in the
theoretical possible acceleration but stabilizes the multigrid simulation. In some simulations
the coarse grid time step additionally has to be reduced in the same regions [8]. This is
especially required in case of implicit solvers. To locate regions of high chemical activity an
additional sensor

	k=Bk
(
1
Nk

Nk∑
i=1

|Ski |
Ski;max + �

)�
(16)

is needed. Ski;max is the maximum absolute production rate of species i within the �ow�eld, Bk

is a grid level dependent constant (06Bk61) and � is a small number to avoid division by
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zero. This sensor is limited to 0 6	61. An exponent � of 0.3 ensures a smooth distribution.
Thus in case of combustion the restriction operators of Equation (15) are replaced by

�rk+1k Rk =
4∑
l=1
Rkl max[0;min(1− �kl ; 1− 	kl )]

�rk+1k Tk =
4∑
l=1
Tkl max[0;min(1− �kl ; 1− 	kl )] (17)

Because combustion is always associated with density gradients, the use of a density-based
sensor instead of Equation (16) is possible too. If the same structure is chosen as for the
pressure-based sensor we obtain


�i; j =
|�i+1; j − 2�i; j + �i−1; j|

(1− �)(|�i+1; j − �i; j|+ |�i; j − �i−1; j|) + �(�i+1; j + 2�i; j + �i−1; j) (18)

and

	ki; j=B
k max(
�i; j; 


�
i−1; j ; 


�
i+1; j ; 


�
i; j ; 


�
i; j−1; 


�
i; j+1) (19)

The disadvantage of this sensor is that it is already activated in non-reactive �ows if there are
strong density gradients, e.g. in a shear �ow with streams of di�erent densities. For this reason
Equation (16) is preferred and used throughout this paper. Two disadvantages are associated
with any damping of the restricted residual error:

• the possible acceleration of the multigrid method is reduced in regions where damping
is performed,

• and empirical constants (Ck or Bk) are required that may change from test case to test
case.

Practical investigations have shown that the in�uence of the model constants is not very strong
as long as the required minimum damping is exceeded. Moreover, a local damping still allows
the full multigrid to work away from the small regions of combustion and shock waves.
In case of damping the restricted residual error Hackbusch [21] proposed a corresponding
ampli�cation during prolongation. This did not work for the test cases investigated.

3.1.4. Highly stretched grids. The success of multigrid techniques in case of highly stretched
grids depends on the kind of grid coarsening and the damping properties of the solver. For 2D
simulations the implicit LU-SGS algorithm was found to su�ciently damp out high frequency
error components even in case of high cell aspect ratio grids. For 3D simulations we use a
semi-coarsening to avoid such problems.

4. RESULTS AND DISCUSSION

Several test cases have been calculated to investigate the convergence acceleration of the
described multigrid scheme and to demonstrate the accuracy of the numerical method for the
simulation of detached shock waves. While the �rst series of simulations treats non-reactive
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Figure 1. Geometry of the hemisphere cylinder.

Table I. In�ow conditions for supersonic and hypersonic �ows over a hemisphere cylinder.

Test case 1 2 3 4 5 6

Ma 1.99 3.00 4.03 5.06 6.03 8.10
p (bar) 0.07139 0.06065 0.02909 0.01830 0.00740 0.00424
T (K) 171.3 120.0 81.5 59.5 49.6 52.7

air �ows, the second test case additionally includes hydrogen combustion. In both cases results
are compared with experimental data.

4.1. Non-reactive �ows over a hemisphere cylinder

In case of supersonic and hypersonic �ows over spheres or blunt shapes bow shocks are
formed. As described before di�erent detachment distances at di�erent grid level may cause
divergence of multigrid solvers. A series of multigrid simulations has been performed for the
experiment of Baer [22]. The Mach numbers of these experiments and simulations are 2, 3,
4, 5, 6 and 8, and the Reynolds numbers vary between 6:69×106 and 2:01×107=m. Figure 1
shows a sketch of the model geometry, a cylinder with a spherical nose. The diameter of the
cylinder is D=147:32mm and wall pressures have measures up to x=920mm. In�ow Mach
numbers, static pressures and temperatures are summarized in Table I for the six di�erent
test cases. The uncertainty of the pressure measurements is reported to increase from ±1%
relative error for the Mach 2 case to ±5% for the Mach 8 case based on repeatability of
measurements [22]. All computational grids consist out of 1 block with 144×384 volumes.
The grid is re�ned in the shock wave regions and near solid walls.
Schlieren photographs have been used to de�ne the experimental shock position. Figures 2

and 3 show calculated pressure distributions for the Mach 2 and 6 �ow, respectively (for
Mach 8 no experimental shock position data is available). The experimentally obtained shock
position is given by circles plotted in these �gures. For all test cases there is a good
agreement between simulation and experiment. Figure 4 shows a comparison between the
normalized experimental and numerical wall static pressures along the spherical part of
the model. Pressure pro�les are plotted for all test cases versus the angle � of the sphere.
While results of the simulations are drawn with di�erent types of lines symbols indicate ex-
perimental results. In Figure 5 the corresponding pressure distributions are plotted in the same
way for the cylindrical part of the model. It may be observed that the agreement between
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Figure 2. Calculated pressure contours and experimentally obtained shock
position (◦) for the Mach 2 test case.

Figure 3. Calculated pressure contours and experimentally obtained shock
position (◦) for the Mach 6 test case.

simulation and experiment is very good for all experiments investigated. Finally, numeri-
cal and experimental shock wave detachment distances (at the symmetry axis) are given in
Figure 6.
All test cases have been simulated with and without the multigrid technique. A full coarsen-

ing V-cycle multigrid method has been used with one iteration at every grid level. The nested
iteration starts at the coarsest grid level to obtain good initializations of the �ow �eld. Without
damping of the restricted residual error near shock waves multigrid convergence was impossi-
ble. While the residual error damping was strictly required, the use of an upwind prolongation
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Figure 4. Calculated and experimentally obtained normalized wall static pressure versus sphere angle �
for Mach numbers 8, 6, 5, 4, 3, and 2.

technique [17] did not improve the convergence behaviour and therefore was not used in the
following investigations. Figures 7 and 8 show the convergence histories of the averaged nor-
malized density residual over the number of multigrid cycles and work units, respectively.
One work unit corresponds to the computational time for one �ne grid iteration. One full
multigrid cycle requires about 2.47 times as much CPU time as one �ne grid iteration. This
is more than the theoretical possible value. One reason for this is that the simulations have
been performed on a vector computer, a NEC SX-5. Due to shorter vector lengths especially
in the implicit part of the LU-SGS algorithm on coarser meshes performance slows down.
Thus on a scalar computer convergence acceleration due to the multigrid method should be
slightly better. Convergence histories are given for the highest and lowest �ow Mach numbers.
After a �rst fast decrease of the residuals convergence slows down. In this part of the time
integration the correct position for the bow shock wave has to be found. It may be observed
that for the 1 and the 4 grid solution convergence improves with increasing Mach number.
The most probable explanation for this e�ect is the decreasing detachment distance of the
bow shock with increasing Mach number. The exact position of the bow shock is de�ned by
aerodynamic reasons. If the detachment distance is smaller, �nding this position is achieved
faster by the numerical solver. As may be seen from Figure 6 the gradient of the detachment
distance increases with decreasing Mach number. Thus, slight changes in the �ow conditions
cause strong changes in the bow shock position if the Mach number is low. The sensitivity
of the bow shock position clearly decreases with increasing �ight Mach number. This e�ect
is re�ected by the numerical simulation that require more iterations to �nd the correct shock
position if the Mach number is low. Figure 8 shows a strong reduction of the required CPU
time by the multigrid method. For a reduction of the residual by six orders in magnitude the
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Figure 5. Calculated and experimentally obtained normalized wall static pressure versus normalized
cylinder length for Mach numbers 8, 6, 5, 4, 3, and 2.
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Figure 6. Calculated and experimentally obtained shock detachment distances
at the symmetry axis versus Mach number.

multigrid technique requires only 20% of the one grid CPU time in case of the Mach 8 �ow
and 26% of the one grid CPU time for the Mach 2 �ow. This is a signi�cant acceleration.
Moreover, the described changes in the multigrid technique to enable these accelerations work
robust and are simple to implement.
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Figure 7. Convergence histories over the number of multigrid cycles with and without
the multigrid technique for the Mach 2 and 8 test case.
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Figure 8. Convergence histories over the number of work units with and without the multigrid technique
for the Mach 2 and 8 test case.

Next, the magnitude of the damping of the restricted residual error is investigated for the
Mach 6 multigrid simulation. Figure 9 shows the damping coe�cients during restriction from
grid level 1 (�nest grid) to 2 (upper �gure), from grid level 2 to 3 (middle �gure) and from
grid level 3 to 4 (lower �gure). Plotted are the terms 1− �k used in Equation (15) to reduce
the active coarse grid residuals. Due to the strong pressure gradients in the front part of
the detached shock wave these damping coe�cients are relatively low. This is in contrast to
supersonic or hypersonic �ows without normal shocks [7, 11, 13] where the required damping
is much lower. We want to emphasize that these �ows have been simulated with the same set
of constants as oblique shock wave simulations. The stronger damping in case of normal or
nearly normal shocks is a pure result of higher pressure ratios. Figure 9 demonstrates that the
damping (with exception of the coarsest mesh) is limited to the direct vicinity of the shock
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grid level 1 to 2

grid level 2 to 3

grid levels 3 to 4

Figure 9. Pressure-based damping coe�cients for the restriction of the residual errors from grid level
1 to 2 (upper �gure), 2 to 3 (middle �gure) and 3 to 4 (lower �gure).

wave. While for the transfer from grid level 1 to 2 at least 45% of the residual is restricted,
there are parts at grid levels 3 and 4 where the complete residual error is damped. However
this concerns only volumes in the front part of the sphere where the shock wave is normal or
nearly normal. Nevertheless, some of the �ne grid information is lost during restriction being
the price for stabilizing the multigrid method.
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4.2. Shock-induced combustion

The experiment of Lehr [23] has been selected to investigate the described multigrid
technique in case of shock-induced combustion. A spherical projectile with a diameter of
15 mm is shot at supersonic speed into a stoichiometric hydrogen air mixture. A series of
di�erent experiments has been performed by Lehr, where the �ow Mach number and gas
mixture has been varied. For the calculated Mach 6.46 test case stationary conditions are ob-
tained. Two distinguishing features have been observed by shadowgraphs in the experiment:
a bow shock ahead of the projectile similar to the bow shocks of the previous test cases
and a following energy release front. Both e�ects are close to pure discontinuities. The ex-
act position of the energy release front depends on the ignition delay time of the premixed
gas. Therefore, the region between bow shock and energy release front is called induction
zone [24]. Due to �nite-rate chemistry e�ects both phenomena are separated. The calculated
size of the induction zone is in�uenced by the reaction mechanism used. Di�erent reaction
mechanisms have been investigated for the simulation of this test case. Astonishingly, the best
results where obtained by a relatively small reaction scheme with seven di�erent species (N2,
O2, H2, H2O, OH, O, and H) and seven reactions only [25]. Some larger and usually more
accurate reaction schemes resulted in instationary behaviour and failure of the simulation. The
same e�ect was observed by other researchers too [26]. Because the emphasis of the present
paper is on the use of multigrid methods for detached shock waves, the in�uence of the
di�erent reaction mechanisms is not investigated any further.
Figures 10 and 11 show calculated pressure and density contours for the described test case.

Pressure and temperature in front of the bow shock are 42 663 Pa and 292 K, respectively.
The computational grid consists out of 128×144 volumes. As may be seen from the pressure
distribution plotted in Figure 10 the simulated and experimental shock position (indicated by
dark points) are in a very good agreement. Because the pressure remains constant over the
energy release front it may not be visible in this �gure. Density contours are chosen (see
Figure 11) to indicate where the energy release front separates from the bow shock. Beside
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Figure 10. Calculated pressure contours and experimentally obtained shock position (•).
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Figure 11. Calculated density contours, experimentally obtained shock position
(•), and energy release front (◦).
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Figure 12. Convergence histories over the number of multigrid cycles with (2–4 grid levels)
and without the multigrid technique.

the dark points showing the experimental shock position, the location of the energy release
front is given by circles. The obtained ignition delay time of the simulation is shorter than in
the experiment, clearly an e�ect of the reaction mechanism used. Nevertheless, the separating
of bow shock and energy release front is clearly visible. Convergence histories for simulations
with and without the nested multigrid technique are plotted in Figures 12 and 13. In contrast
to the previous test case the one grid solution does not slow down as much as before with
ongoing iteration. This may be due to the smaller size of the projectile, due to a smaller
computational grid and due to the relatively simple �ow structure. On the other hand, the
convergence rates with multigrid technique are worse than for the non-reactive test case. In
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Figure 13. Convergence histories over the number of work units with (2–4 grid levels) and
without the multigrid technique.

terms of CPU time reduction the bene�t is smaller. By using the 4 level V1 multigrid method
the required CPU time is about 55% of the one grid CPU time for a residual drop of eight
orders in magnitude. To enable convergence slightly higher values for Ck had to be chosen
than for the non-reactive test case. Thus in comparison to a two grid multigrid solution a
third and fourth grid level achieved small improvements only. This simulation is close to a
worst case for the multigrid technique described, because a detached shock wave with strong
pressure gradients and a detached �ame occurs. Moreover, the critical regions where damping
has to be performed covers most of the features of the total �ow �eld. Therefore, the test case
also demonstrates the limitations of the described damping. On the other hand, even for this
simulation multigrid convergence is possible and the required CPU time of 4 level multigrid
solution is nearly half the CPU time of the single grid solution (on a vector computer). Thus
even under unfavourable conditions considerable accelerations are possible. Especially, the
simplicity of this technique makes it attractive to many multigrid users.

5. CONCLUSIONS

A modi�ed multigrid method has been used successfully for the simulation of detached shock
waves over a wide range of Mach numbers. In these cases multigrid convergence is enabled by
a local damping of the restricted residual error in the vicinity of shock waves. Due to higher
sensitivities of the bow shock position at low supersonic speed the convergence rates increase
with increasing Mach number for single and multigrid simulations. For the non-reactive test
cases the required CPU time is reduced up to 20% of the single grid CPU time. For the
premixed reactive �ow �eld with shock-induced combustion the required multigrid CPU time
is about 55% of the single grid CPU time. This is less than convergence accelerations achieved
for attached shock waves and attached �ames. Because the location of detached shock waves
is de�ned by aerodynamic reasons and that of a detached �ame by kinetic reasons there may
be a shift in bow shock or �ame position at di�erent grid levels. This requires a stronger
damping for multigrid method to converge and reduces the possible amount of convergence
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acceleration. Nevertheless, a considerable reduction in CPU time is achieved by this technique.
It is simple to implement and works robust and reliable in supersonic and hypersonic �ow.
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